Skip to main content
Biology LibreTexts

8C: ATP and Oxidative Phosphorylation

  • Page ID
    4608
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives

    • explain reasons for the strongly exergonic hydrolysis of carboxylic acid anhydrides, phosphoric acid anhydrides, mixed anhydrides, and analogous structures and give approximate values for the ΔG0 of hydrolysis of them;
    • identify from Lewis structures molecules whose hydrolytic cleavage are strongly exergonic;
    • explain how the exergonic cleavage of phophoanhydride bonds in ATP can be coupled to the endergonic synthesis of macromolecules like proteins;
    • draw mechanisms to show how oxidation and phosphorylation reactions are coupled in anaerobic metabolism through the productions of a mixed anhydride catalyzed by the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase;
    • explain how arsenate can double oxidation and phosphorlyation reactions in glycolysis
    • explain how NAD+ can be regenerated from NADH in anaeroboic condition to allow glycolysis to continue;
    • explain the general flow of electrons from NADH to dioxgen through a series of mobile and membrane protein bound electron acceptors in electron transport in the mitochondria inner member.
    • explain with picture diagrams how oxidation and phosphorylation reactions (to produce ATP) are coupled in aerobic metabolism through the generation and collapse of a proton gradient in the mitochondria;
    • draw pictures diagrams explaining the structure of F1F0ATPase in the inner mitochondria member and explain using the picture how ATP synthesis is coupled to protein gradient collapse
    • write an equation for the electrochemical potential and use it to calculate the available ΔG0 for ATP production on proton gradient collapse, given typical values for ΔpH and ΔE across the membrane

    Biological oxidation reactions serve two functions:

    1. Oxidation of organic molecules can produce new molecules with different properties (e.g., an increase in solubility is observed on hydroxylation of aromatic substrates by cytochrome P450) and Likewise, amino acids can be oxidized to produce neurotransmitters.
    2. Most biological oxidation reactions occur, however, to produce energy to drive thermodynamically unfavored biological processes such as protein and nucleic acid synthesis, or motility.

    Chemical potential energy is not just released in biological oxidation reactions. Rather, it is transduced into a more useful form of chemical energy in the molecule ATP (adenosine triphosphate). This chapter will discuss the properties that make ATP so useful biologically, and how exergonic biological oxidation reactions are coupled to the synthesis of ATP.


      This page titled 8C: ATP and Oxidative Phosphorylation is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Henry Jakubowski.